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The method of collocation using cubic B-splines and an adaptive mesh is applied to the 
solution of the partial integro-differential equation that describes the continuous mass spec- 
trum of particles undergoing stochastic collection growth. Temporal discretization and a num- 
ber of explicit and implicit linear multistep methods are employed to solve the system of 
ordinary differential equations. The numerical method is tested by solving model problems 
that describe the coalescence of particles for both single and double initial distributions. It is 
found that accurate solutions can be obtained using a small number of B-splines, and that 
adaptive mesh grading improves the accuracy of the solutions without needing additional 
nodal points. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The time evolution of a continuous spectrum of particles undergoing stochastic 
collection growth is described by the stochastic collection equation that has the 
form 

g N(m, t) = Jr’2 N(M, t) N(m - M, t) K(M, rn - M) dA4 

- N(m, t) Irn N(M, t) K(M, m) dM. (1.1) 
0 
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SPLINE COLLOCATION 

Here N(m, t) dm is the average number of particles per unit volume of space with 
masses between m and m + dm at time t, and K(M, in) is the collection kernel that 
is a symmetric function of its two arguments and has the units of volume per time. 
The function K represents the geometry and dynamics of the collision mechanism. 
The terms on the right-hand side of Eq. (1.1) can be understood as follows: The 
first term represents the rate of increase of particles by collection of srnal~~~ 
particles. The upper limit of m/2 prevents overcounting. The second term se 
the loss of particles due to collection with particles of all masses. Equatio 
often expressed in volume (rather than mass) coordinates. Both mass a 
are conserved quantities. 

Equation (1.1) describes a number of phenomena in which mobile partic”aes 
collide with each other and fuse. Examples of such coalescence processes are aerosol 
agglomeration [l], coalescence of voids and bubbles in irradiated materials, an 
the growth of inclusion in castings [2]. Our interest in the stochastic collection 
equation arises from its applications to examining the formation of ram 
coalescence of cloud droplets. For the last three decades, the “‘classical” pr 
cloud microphysics has been to explain the rapid development of ram 
accurate and economical scheme to solve the stochastic collection equation is 
mandatory to enable progress to be made in this field. 

For studying rain formation in convective clouds, (I. 1) is to be embedde 
dynamic and thermodynamic equations that govern the time-dependent three- 
dimensional airflow of the cloud convection. This means that (1.1) has to be solve 
at each time step for each grid point of the numerical cumulus model. For three- 
dimensional cloud models this results in very high computational demands Bt is 
thus mandatory to represent the spectrum of cloud and rain particle sizes wit 
few classes as possible. To maximize the information on the structure of the 
spectrum, the size classes (or nodal points of the numerica. scheme) shoul 
chosen in an optimal way. Furthermore, the choice of size classes shoul 
updated at regular intervals to remain close to the optimal partitioning. This paper 
deals with numerical schemes that have this desired feature of adaptive mesh 
grading. 

The theoretical justification of Eq. (1.1) has been investigated by a ~~rnbe~ of 
authors [4-71. A detailed discussion of the stochastic completeness of Eq. (1.1) is 
given by Gillespie [S]. The stochastically complete equation has been solved using 
Monte Carlo simulation techniques. Recent calculations [7] show that discre 
ties may exist between the solution of Eq. (1.1) and the true stochastic averages. 

Exact solutions of Eq. (1.1) have been obtained in a few exceptional cases f[S], 
These analytic solutions provide a useful test of the accuracy of approximate 
numerical solutions [9-131. The general problem, however, can be solved only by 
approximate numerical methods [14-151. A complete understanding of stochastic 
coalescence in realistic situations is therefore limited by the accuracy sf the 
numerical solutions. 

he first step in solving Eq. (1.1) is to discretize the mass variables. 
oath is to map Eq. (1.1) onto a finite domain and then to a~~r~x~~at~ 
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solution function by a linear combination of trial functions. The difficulty with this 
approach is that the efficiency of the method will depend on finding a suitable trial 
space. A number of the methods used in practice employ piecewise polynomials for 
discretizing the mass. For example, the successful approach used by Bleck [lo] 
employs piecewise constant functions. The result of using this approximation is that 
the approximate solution is discontinuous at the nodes. Another approach [13], 
which is the one we shall use, is to choose cubic splines. The cubic spline 
approximation is smooth (C’ continuity at the nodes) and yields an approximate 
equation with better convergence properties than the method based on piecewise 
constant functions. 

The choice of nodal points is expected to be important. In particular, a good 
choice of nodal points will reduce the number of trial functions that are needed for 
an accurate solution of Eq. (1.1). In all of the previous numerical approaches the 
nodes are fixed and do not vary. In our approach, however, the nodes are allowed 
to move. Since the structure of the solution function may vary considerably with 
time, we have used adaptive mesh grading to optimize the position. of the nodal 
points. This optimization is performed by equidistributing the nodal points with 
respect to the arc lengths of the approximate solution function [16]. 

A collocation method reduces the problem of solving Eq. (1.1) to that of solving 
a system of first-order ordinary differential equations for the expansion coefficients. 
Several numerical schemes are employed to evaluate these coefficients: the classical 
one-step e-method, which includes, as special cases, an explicit scheme, the 
Crank-Nicolson scheme, and a fully implicit scheme. We also implement multistep 
methods such as the Adams predictor-corrector schemes and Gear’s method for stiff 
systems. 

A conserved quantity arising from Eq. (1.1) is the moment integral 

I m N(m, t) mdm = Nom,, 
0 

(1.2) 

where m, is the initial average mass of the particles and No is the initial number of 
particles per unit volume. 

An important feature of the present method is that it does not explicitly use the 
conserved quantity (1.2). We can therefore use this integral as an independent test 
of the accuracy of our numerical solution. In cloud physics (1.2) is referred to as the 
liquid water content (LWC). 

Section 2 describes the approximation method. Section 3 gives our numerical 
results, including a comparison of results using non-adaptive and adaptive mesh 
grading. Comparisons are made between numerical and analytic solutions for two 
types of kernels, one being the sum of its arguments and the other a constant. The 
equation with double initial distribution is also solved. Our conclusions are given in 
Section 4. 
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2. THE APPROXIMATION METHQD 

This section describes our numerical method for solving Eq. ( 1.1). The three basic 
components of this method are (i) cubic spline approximation, (ii) adaptive mesh 
grading, and (iii) linear multistep methods. The adaptive mesh grading is optional 
and may be “switched off” if necessary. 

A major problem to be overcome when dealing with Eq. (1.1) for the liquid drop 
problem is that the mass spectrum of droplets can range over many orders of 
magnitude. We shall take this variation into account by suitably transforming the 
mass coordinates. It is convenient to map the mass coordinates rn: ME [a, co) onto 
dimensionless variables 4, Q E [ - 1, 11. For this purpose we use the transformation 

where [ is a “free” mass parameter. The transformed equation (1.1) becomes 

where 

(2.3) 

and 

is the transformed mass difference m - M. The mapping (2.1) introduces a 
singularity at Q = 1 in the kernel of Eq. (2.2). It should be noted, however, that t 
second integral in Eq. (2.2) is not singular if the integrand decreases snf~ci~~tl~ 
rapidly, for example, as an exponential. 

We now consider the problem of mass discretization. We seek an approximation 
to the (unknown) solution v(q, t) of Eq. (2.2) which satisfies some inter 
property. To this end we choose as our approximating functions the tini 
space of cubic splines with a given set of nodal points [17]. To be specific, let X, be 
a partition of the interval [ - 1, 11 defined by the nodal points - I z: 
s n, 1 < sn, 2 < . . . < s,,, = 1. On this partition, together with the extended knots 
s,,-2~ss,,-1~s,o~s, iands,.ds n,n+l-- n.n+2\ n,n+37 we can construct cubic 
B-splines [ l&19]. We denote the B-splineziy (B*z;r_‘d, where each function 
is non-zero over an interval (s,,+ 2, s,.~+ 2). The cubic B-splines form a basis for a 
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linear space of cubic splines on rc, with C2 continuity over [ - 1, 11. Using this 
linear space, we can now approximate the function v(q, t) by the linear combination 

n+l 
,F, .A, i(t) 4, i(q). (2.5) 

We now discuss the adaptive mesh grading procedure. The end nodes and the three 
additional nodes on either end of the interval [ - 1, l] remain lixed. The position of 
these additional nodes has no effect on the spline approximation in the interval 
[ - 1, 11. Since the procedure is applied at some fixed time, we temporarily suppress 
the variable t. Let u(q) be the cubic B-spline approximation (2.5) on the partition 
n n, and let 

be the arc lengths of u(q) over the subintervals I= [s, i- r, s,, i]. 
Our approach to adaptive mesh grading is to equidistribute the nodal points with 

respect to the arc lengths. Extreme values are damped by introducing a weighted 
means quantity for the interior subintervals 

Pi= f Pj?i+j-19 i=I+2, . . . . n- 1. (2.7) 
j=O 

Similar but one-sided means are used for the boundary subintervals. The value of I 
is chosen to fix the width of the interval of influence. For our numerical examples 
we have chosen I = 1, p. = p2 = f and pi = f . 

The measure of arc length is obtained by summing /3. After applying inverse 
linear interpolation to equidistribute the measure (2.6) with respect to the nodal 
points, we arrive at a new partition, 6,. 

The above procedure can be applied iteratively until convergence of the mesh is 
achieved. We employ two criteria for convergence. The first criterion is based on an 
equidistribution of the quantities (/I,} so that 

o‘= i (pi-p)’ 1’2 
[ I:; (n-1) 

i=2 
(2.8) 

is less than some specified tolerance. Here /I is the average value of {/Ii}. The 
second criterion is based on how far the nodal points have moved from their 
previous position. Let (s,, j> and {in, i} be the old and new points, respectively. If h 
is the average separation of points, then our second criterion for convergence can 
be written as 

Is^*,i-srz,il <&A> i=l n. > . ..> (2.9) 
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where E is a specified tolerance. If either of the above two conditions are satisfied 
then the set of points (in, jj is assumed to have converged. The tolerance values 
must be found by trial and error and depend on the problem which is being solve 

We now return to the approximate solution (2.5). From Eqs. (2.2) and (2.5) the 
time evolution equation becomes 

where cjk(q) is defined by moment integrals 

- .XB,,,j(q) I’, &k(Q) WQ, 4) 

(2.10) 

(2.11) 

On introducing (n + 2) collocation points (rn,[>;=+d E [ - 1, l] and collocating, we 
obtain the system of first-order ordinary differential equations 

I= 0, 1, --, n + 1. (2.12) 

Here fT := lX,oWJi, dt), ...Ji,n+ 1 (t)] is an (n+2) vector, and CI := [c&(r,i)] 
is an (n+2)x (n+2) matrix. Further, defining the (n-/-2)x (n+2) matrix 
CD := [B,, Jr,, ,)], we may rewrite Eq. (2.12) as 

(2.13) 

To ensure that the matrix Q is invertible, the choice of collocation points (r,, ,);lrd 
is restricted by the Schoenberg-Whitney theorem [17, pa 200, Theorem XIIIA], 
which requires that 

sn,i-2<rn,i<sn,i+2, i=o, 1, . ..) n+ 1. 

The following choice of collocation points is used: 

(2.14) 

r,, o = s . n, 1 3 r n, 1 = (sn, 1 -E- s,, d/2; 

rn,iEs,,i, i=2,...,n- I; 

r n,n=b2,.-1+&z,nY2~ r,,n=s,,.. 

We now turn to numerical schemes for solving the system (2.13): 

(2.15) 
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I. Classical One-Step 0 Method 

Let At denote the current time step, f, = f(t), and f,,, = f(t + At). The o-method 
for (2.15) is defined by the finite difference equation 

@Df,,l -8Atg,+1 =Qf,+ (l-6) Atg,. (2.16) 

We investigate three frequently used cases: 

(i) 0 = 0, which is the usual explicit scheme, namely 

w.1 = @f, + Atg,; (2.17) 

(ii) 19 = 4, which is the Crank-Nicolson method, namely 

@ft.1 -$Atgt+l=@f,+$Atg,; (2.18) 

(iii) 8 = 1, which is the fully implicit scheme, namely 

@ft.1 -A%+1 =@fr (2.19) 

Notice that both (2.18) and (2.19) are non-linear in f,,,. We discuss both schemes 
together in Eq. (2.16), where we use the following algorithm: We obtain an initial 
estimate from (2.17) that is, 

Qf;“! 1 = Bf, + Atg, (2.20) 

and iterate 

@f;-$+l” = Qf, + (1 - 0) Atg, + 0Atgj’,‘, . (2.21) 

II. Higher Order Multistep Methods 

The general multistep method of stepnumber k is defined by the formula 

2 <Dfi+juj=At $J gi+jPj, (2.22) 
j=O j=O 

where aj and bj are constants. 
A standard IMSL subroutine DGEAR was used in this case. The package makes 

use of Adams predictor-corrector schemes, as well as Gear’s method for stiff systems 
POI. 

For some of these methods the right-hand side of the equation 

f=w’g (2.23) 

must be computed or estimated. Let @-’ = [Pi]. The required Jacobian is 

n+l 

JV = C Cdkj(Yn, i) + dj/c(rn, i)lfn,k, 
k=O 

(2.24) 
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where Di := [&(Y,, J] is defined by 

n+l 

Dlc= c PLkrC,. 
I=0 

(2.25) 

3. NUMERICAL EXAMPLES 

In the formulation of numerical procedures to test the validity of the 
approximation method we have paid particular attention to the numerically stable 
methods used in the sub-procedures. 

The cubic B-splines were evaluated using the iterative technique of Cox [ ?.8], 
This procedure is both fast and accurate. The next step is to evaluate the moment 
integrals cjk(r,,!) in Eq. (2.11). These integrals were evaluated using IMSL sub- 
routine DCADRE. The actual moments were calculated over intervals [sj, s,, !) 
and summed. 

In the case of adaptive mesh grading the initial condition is first approximated by 
a cubic spline on a uniformly spaced mesh. The coefficients in Eq. (2.5) are scaled 
to fn,,+ where 

The adaptive mesh grading procedure described in Section 2 is performe 
initial condition and is repeated after a fixed number of time steps. 

To test our method for solving the stochastic collection equation (1.1) we first 
compare numerical results against analytic solutions [8]. For the initial condition 
we take 

No(~+l)Y+l m y 
N(m, 0) = - 

( 1 
- 

m. T(y+l) m. 
exp( -mlmo)(r + 111, t 

where y B 0. 
We shall consider two simple cases for the collection kernel: 

I. GoIovin [21] kernel: 

K(M, m) = b(m + M). (3.3) 

Scott [S] gives the solution for y = 0 as 

(3.4) 



296 EYRE, WRIGHT, AND REUTER 

where r = 1 - e-T, T = bm, N,, t is the dimensionless time, and I, is the modified 
Bessel function of the first kind of order one: 

(3.5) 

II. Constant kernel. 

K(M, m) = c. (3.6) 

For this example Scott [S] gives the solution for y = 0 as 

(3.7) 

and for y = 1 as 

N(m, t) = 8 2 exp { -2(m/mo)} sinh’(2$,~~~~$~ 2)1”‘, (3.8) 

where T= cN, t is the dimensionless time. 
Numerical examples are chosen to describe the cloud water droplet problem 

approximately. For the initial value we take No= 2.3874(2) cme3 and 
m, = 4.1887( -3) ,ug. (The mass m, corresponds to a mean drop radius of about 
10 pm, while the liquid water content (LWC) is Nom0 = 1.0 pg cm-3.) Parameters 
for the collection kernels I and II are chosen to be b = 1.53( -3) cm3 pg- ’ s-l and 
c= 1.8( -4) cm3s-l, respectively. 

Numerical results are obtained for four examples, which represent some of our 
typical results for the method. For convenience we have tabulated the examples in 
Table I. We note that Eq. (1.1) is defined on an infinite mass domain, and that 
mapping (2.1) onto a finite domain introduces a singularity. The method used to 
deal with this singularity is to truncate the domain so that q,Q E [ - 1, qc]. We 
remark that when the exact solution is known then it is possible to estimate the 

TABLE I 

Tabulation of the Numerical Examples 

Example 
Collection 

kernel 
Initial 

condition 

y=o 
y=o 
y=l 

Double exponential 
(y=O) 
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error introduced by the domain truncation [13]. In ail of the numerical examples 
the mapping parameter [ is chosen so that the initial condition v(q, 
concentrated in a small region of the interval [ - 1, 13. The cutoff parameter qc is 
chosen so that it does not affect the computed results significantly. In order to 
satisfy these requirements we have chosen the mapping and cutoff parameters to be 
i = 0.03 ,ug and q, = 0.9, respectively. 

In the case of the o-method we have used a step length of d t = Ss, but for Gear’s 
method a variable step length is used by subroutine DGEAR. In practice, we find 
very little difference between the results obtained with different linear multiste 
methods. We therefore make no distinction between these methods when presentin 
our numerical results. 

The accuracy of the approximate solution v,(q, t) is measured in two ways: The 
first is to compute the approximate LWC by evaluating the truncated integral 

where 

A further measure of the approximate solution is provided by the L,-norm of the 
relative error 

II4 m = max 
v*(q, t) - v(q, 4 

YEI--I,11 1 +v(q, t) . 
(3.11) 

Note that while it is always possible to evaluate the integral (3.9), it is only possible 
to calculate the relative norm if the exact solution v(q, t) is known. 

We first consider the case of initial condition (3.2) with y = 0. Tables II and III 
show results for the Golovin and constant kernels, respectively. The results are 
obtained with n = 12 nodes. In both examples a definite improvement in t 
accuracy of the approximate solution is achieved by using the adaptive mesh 
grading procedure. Figures 1 and 2 show the profile of the approximate solutions 
V,(q, t) for the Golovin and constant kernels, respectively. In the case of the 
Golovin kernel there is no discernible difference between the approximate and the 
exact solutions. However, the profile for the constant kernel does deviate from the 
exact solution over a period of 10 min and at the large mass end of the spectrum. 
This discrepancy disappears when we use a finer mesh with n = 22 nodes. 
Qualitatively, the Golovin kernel tends to spread the mass spectrum, whereas the 
constant kernel tends to shift the mass spectrum to the larger mass droplets. 

We next consider the initial condition (3.2) with y = 1. (This function 
more structure than the y = 0 case.) Table IV shows the result for the const 
nel using n = 12 nodes and At = 5s. Figure 3 shows the profile of the approximate 

581/78/2-4 
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TABLE II 

Results for the Golovin Kernel (Example 1) after 1 min Intervals Using n = 12 Nodes 

t 

No regrid 

(LWCl.4 II4 m 

Regrid 

&WC), II4 rn 

0 0.999 It-61 0.998 8(-7) 
1 1.008 3(-2) 1.000 1(-l) 
2 1.017 5(-2) 0.999 1(-l) 
3 1.025 1(-l) 0.999 8(-2) 
4 1.035 1(-l) 1.004 U-1) 
5 1.047 2(-l) 1.013 U-1) 
6 1.060 2(-l) 1.018 8(-2) 
7 1.071 3(-l) 1.017 962) 
8 1.080 3(-l) 1.013 9(-2) 
9 1.087 3(-l) 1.007 6(-2) 

10 1.093 2(-l) 1.004 3(-2) 

Note. The exact liquid water content (LWC) is 1.0 pg crnm3. 

TABLE III 

Results for the Constant Kernel and Initial Condition with y = 0 (Example 2) 
Using the Parameters of Table I 

t 

No regrid 

(LWC), IJell, 

Regrid 

WWC)A II4 m 

0 0.999 l(4) 0.998 8(-7) 
1 1.041 1(-l) 1.009 5(-2) 
2 1.047 1(-l) 1.009 1(-l) 
3 1.063 2(--l) 1.038 7(-2) 
4 1.079 1(-l) 1.053 4(-2) 
5 1.080 2(-l) 1.047 7(-2) 
6 1.071 2(--1) 1.030 93(-2) 
7 1.059 2(-l) 1.012 7(-2) 
8 1.049 a-11 0.999 5(-2) 
9 1.042 1(--l) 0.991 5(-2) 

10 1.039 2(-l) 0.990 4(-2) 



SPLINE COLLOCATION 299 

-1.0 0 0.9 

9==(S) 

FIG. 1. Profile of the approximate solution CA(q, t) for the Golovin kernel (Example 1) using n = 12 
nodes and AI = 5s. Each curve is labeled by the time in minutes. 

A 2.0 

: 
5 
i 

v" 

2, 
,d 

li 1.0 

-1.0 0 0.9 

FIG. 2. Same as Fig. 1 for the constant kernel and initial condition y = 0 (Example 2). The exact 
(broken) and approximate (solid) curves are shown. 
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TABLE IV 

Results for Constant Kernel and Initial Condition with 
y = 1 (Example 3) Using the Parameters of Table I; no 

regridding 

t (LWC), II4 a 

0 1.001 7(-3) 
1 1.002 3(-2) 
2 0.995 4(-2) 
3 1.001 9(--Z) 
4 1.014 W-2) 
5 1.018 3(-2) 
6 1.012 5(-2) 
7 1.002 5(-2) 
8 0.991 5(-2) 
9 0.983 2(-2) 

10 0.978 I(-2) 

I 
0 

FIG. 3. Same as Fig. 1 for the constant kernel and initial condition y= 1 (Example 3). The exact 
(broken) and approximate (solid) curves are shown. 
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solution 3,(q, t). For this example it as found that adaptive mesh grading does not 
improve the accuracy of the approximate solution. Nevertheless, sufficient accuracy 
was achieved without regridding. 

A detailed investigation of the reasons for the failure of the adaptive mesh 
grading procedure for example 3 uncovered the following: The spline i~terpoIatio~ 
can oscillate in regions between collocation points. If no regridding is performed, 
then only the original collocation points are used in the time stepping and t 
oscillations do not contribute to the error. If, on the other hand, one attempts 
regrid from the spline interpolant, then the oscillations will contribute to the error 
in subsequent time steps. The result is that the error due to the oscillations will 
grow with time, and a poor approximation results. 

We now investigate a problem that does not have an analytic solution. We con- 
sider the Golovin kernel. For the initial condition we take a double distri 

N(m,Q)=x(N,/m,)exp(-m/m,)+(l-x) (Nl/mi)exp(-m/m,). (3.12) 

Here m, = 8m,, and x = 0.8, where x is the fraction of the LWC contained in the 
first term. (The total LWC is Nom,=N,m, = I.0 ,ug cm-“.) Figure 4 shows the 
profile of the approximate solution using IZ = 32 nodes. The double distribution of 
the initial condition can be seen clearly. As time progresses, the bump on the left- 
hand side disappears, whereas the bump on the right-hand side grows with a peak 
moving to the larger mass end of the spectrum. Table V shows results for the 
&WC)* using n = 32 and n = 14 nodes over a period of 10 min. The error for 
M = 32 is less than lo/& while the error for n = 14 is less than 4%. The result of 
regridding using IZ = 14 nodes is shown in the last column. Here we see that the 
effect of regridding is to improve the accuracy of the approximation signi~~antl~ for 

FIG. 4. Profile of the approximate solution S,(q, 6) for the Golovin kernel and initial double 
distribution (Example 4) using n = 32 nodes. 
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TABLE V 

Results for Golovin Kernel and Initial Double Distribution 
(Example 4) 

t 

No regrid 

n=32 ?I=14 

Regrid 

n=14 

0 1.ooo 1.002 1.003 
1 1.001 1.006 1.002 
2 1.003 1.012 1.001 
3 1.005 1.018 1.000 
4 1.006 1.024 1.000 
5 1.006 1.024 1.000 
6 1.007 1.029 1.000 
7 1.007 1.032 1.000 
8 1.005 1.034 0.998 
9 1.000 1.033 0.994 

10 0.993 1.027 0.986 

Note. The (LWC), is calculated using n = 32 and n = 14 nodes. 

I 

FIG. 5. Profile of the approximate solution O,(q, t) for the Golovin kernel and initial double 
distribution (Example 4) after 8 min showing the n = 32 no regridding (solid) curve, the n = 14 no 
regridding (broken) curve, and the n = 14 with regridding (dotted) curve. 
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much of the time interval. Figure 5 shows the profile after 8 min for the above three 
cases. Were we see that the effect of regridding is to improve the profile, ~art~c~~ar~y 
at the longer mass end of the spectrum. The truncation of the interval at ac = 0.9 
introduces an error of less than 1% in the LWC, as can be seen from Table V. 

4. SUMMARY 

A numerical scheme for solving the stochastic collection equation has been used 
to solve a number of model problems that approximately describe water droplet 
coalescence. For the problems we have considered there is little or no difference 
between the different linear multistep methods. The subroutine DCEAR is more 
sophisticated than the simple one-step &method but requires more computer ti 
DGEAR is therefore used only to check the accuracy of results using the @-method. 
The major source of error is the coarse mesh that is used for the sphne inter- 
polation. Since the mass spectrum extends over many orders of magnitude, an 
appropriate mapping of the infinite mass domain is required. The choice of 
mapping parameter [ is critical for the success of the method. In a global sense this 
mapping can be regarded as a method for positioning the nodal points. A further 
adjustment of the mesh can be obtained by equidistributing these points wit 
respect to the measure (2.6). The numerical method permits an independent chec 
of the approximate solution simply by calculating the LWC, which is a conserve 
quantity for the exact solution. 

This study has shown that the stochastic collection equation can be solved 
accurately using only a small number of B-splines, provided that the nodal points 
are chosen optimally and that the grid arrangement is adapte as the size spectru 
evolves. 

Furthermore, some examples have shown that adaptive mesh grading can 
improve the accuracy of the numerical ,solution significantly without ~~s~~~ 
additional nodal points. The numerical scheme presented seems attractive for use in 
the three-dimensional numerical models of clouds in which coalescence of droplets 
is an important mechanism of rain formation. 
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